Coordinación de Protecciones

César Chilet León

PROTECCIÓN DE MT
PROTECCIÓN DE BT
COORDINACIÓN DE PROTECCIONES
SOBRETENSIONES TRANSITORIAS
DISPOSITIVOS DE PROTECCIÓN

Introducción
Sobrecorriente
Cálculo de cortocircuitos
Dispositivos de protección

1.0 Introducción

Objetivo de la protección

El propósito de seleccionar un dispositivo de protección es desempeñar dos funciones esenciales:

- 1. Proteger a las personas y
- 2. Proteger las instalaciones, garantizando al mismo tiempo la mejor continuidad de servicio posible.

Función de la protección de una instalación eléctrica

Limitar los efectos de las <u>sobrecargas y cortocircuitos</u>.

Las **personas** deben ser *protegidas contra contactos indirectos* conforme al esquema de conexión a tierra y a las características de la instalación

Los **equipos** que cubren todos los requerimientos de corte y protection de BT son:

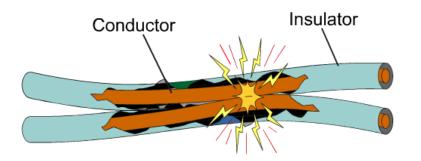
- Interruptores automaticos de bastidor abierto NW, NT y CBS para cuadros de protección y de distribucion de alta potencia y Baja Tensión (hasta 6.300 A).
- Interruptores automaticos de caja moldeada NS y NSX (16 a 3200 A).
- Interruptores-seccionadores.
- Interruptor automático Acti9 para proteger los circuitos terminales (0,5 a 125 A).
- Interruptores diferenciales y bloques diferenciales adaptables para la protección de las personas.
- Protecciones de sobretensión para proteger los equipos frente a estos eventos.

2. Sobrecorriente

Sobrecorriente

Sobrecarga.

- Corriente superior a la nominal, en un cierto porcentaje.
- Por ejemplo: 150% de sobrecarga


Cortocircuitos

- Corriente que resulta ser varias veces la corriente nominal.
- Por ejemplo: 8 veces la corriente

Cortocircuito

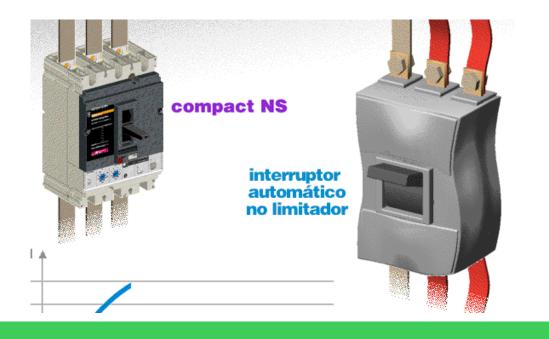
Fenómeno eléctrico que ocurre cuando dos puntos entre los cuales existe una diferencia de potencial se ponen en contacto entre sí, caracterizándose por elevadas corrientes circulantes.

Cortocircuito

Efectos:

TÉRMICOS:

Calentamiento muy rápido, incluso con desprendimiento de material.


A mayor duración mayor será la probabilidad de incendio.

Cortocircuito

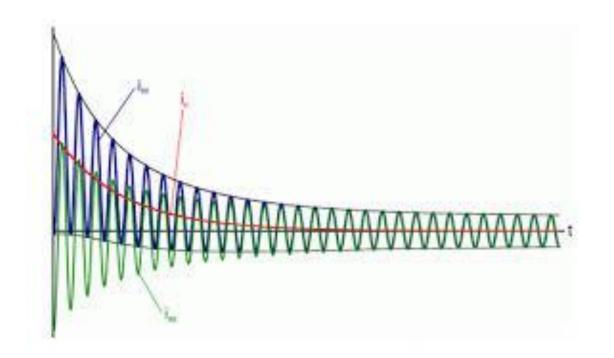
Efectos:

ELECTRODINÁMICOS:

Producto del cortocircuito se presentan elevadas fuerzas de atracción o repulsión, en barras, aisladores, interruptores, cuya magnitud es proporcional al cuadrado de la intensidad del cortocircuito.

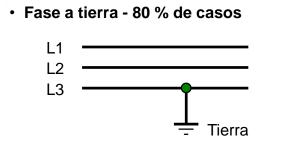
Sistemas de protección eléctrica

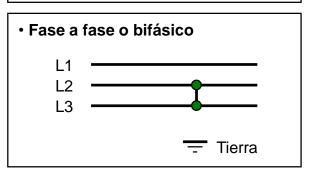
Supervisan de forma continua el estado de los componentes del sistema eléctrico y cortan el suministro cuando son objeto de perturbaciones serias, tales como cortocircuitos, fallos de aislamiento, etc.

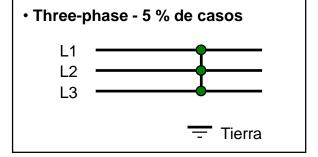

La elección de un dispositivo de protección es uno de los pasos más importantes en el diseño del sistema eléctrico. Basada en un análisis del desempeño de los equipos eléctricos y los efectos que provocan las averías.

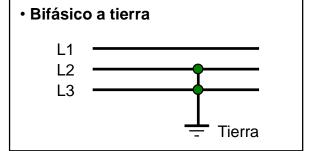
3. Cálculo de cortocircuitos

Corriente de cortocircuito




Conocer los niveles de las corrientes de cortocircuito trifásico (Icc) en diferentes puntos de una instalación es una característica imprescindible del diseño.





Cortocircuitos Tipos

lcc en el secundario de un transformador de distribución

El caso de un transformador

■ Como primera aproximación, se presupone que la impedancia del sistema de alta tensión es insignificante, por lo que:

$$I_{cc} = \frac{I_n \times 100}{U_{cc}}$$
 donde $I_n = \frac{S \times 10^3}{U\sqrt{3}}$ y:

S = kVA intensidad del transformador.

U = tensión compuesta de la red en vacío.

 I_{n} = corriente nominal en amperios.

 I_{cc} = corriente de defecto de cortocircuito en amperios.

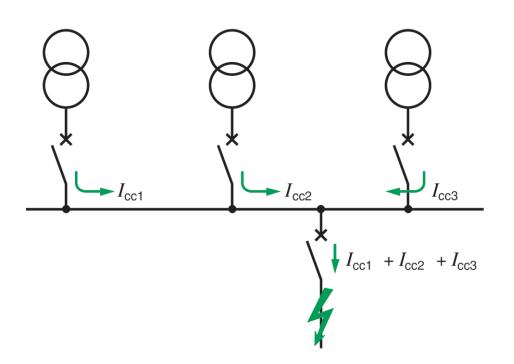
 U_{cc} = tensión de cortocircuito del transformador expresado en %.

Valores típicos de Ucc

Intensidad del transformador	U _{cc} en %		
en kVA	Tensión secundaria en circuito abierto		
	410 V	237 V	
50 a 630	4	4	
800	4,5	5	
1.000	5	5,5	
1.250	5,5	6	
1.600	6	6,5	
2.000	6,5	7	
2.500	7	7,5	
3.150	7	7,5	

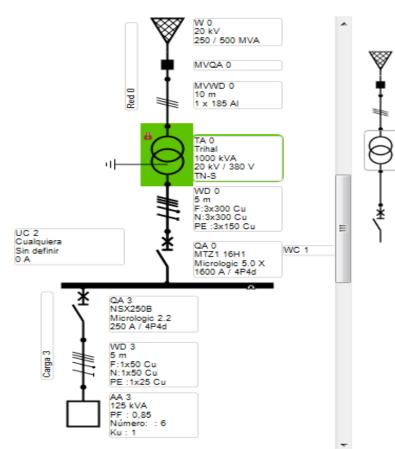
Ejemplo

Transformador de 400 kVA, 242/420 V sin carga


$$U_{cc} = 4\%$$

$$I_{\rm n} = \frac{400 \times 10^3}{410 \times \sqrt{3}} = 563 \,\text{A}$$
 $I_{\rm cc} = \frac{563 \times 100}{4} = 14 \,\text{kA}$

 \blacksquare En la práctica I_{cc} es ligeramente inferior al calculado con este método,


Caso de varios transformadores en paralelo alimentando una barra conductora

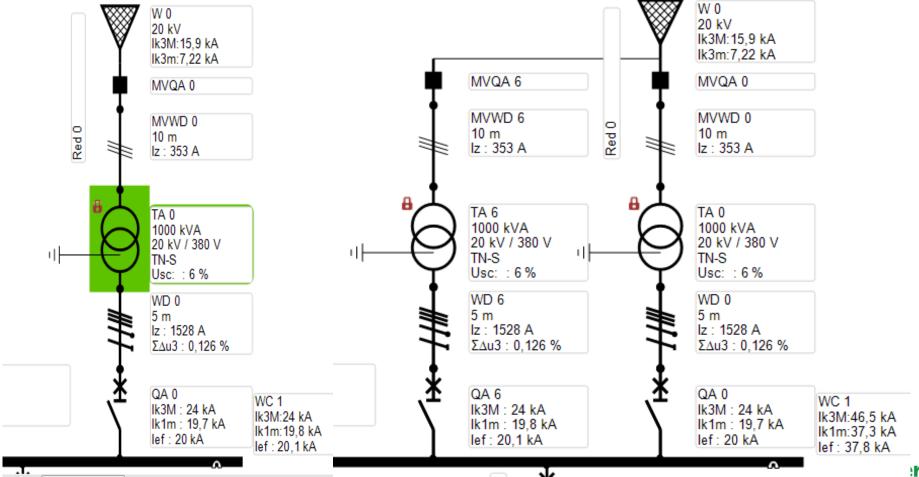
Se puede obtener el valor de la corriente de defecto en la salida inmediatamente aguas abajo de las barras conductoras como la suma de las *Icc* de cada transformador calculadas por separado.

Caso 1

Trafo MT/BT TA 0

Aislamiento	Aislamiento seco ▼
Tipo de pérdidas	CoBk ▼
Acoplamiento primario	WC ▼
Acoplamiento secundario	yn ▼
UrT2 (V)	380 ▼
Esqu. de conexiones a tierra	TN-S ▼

Resultados


Gama	Trihal
SrT (kVA)	1000 🕶 🚨
UkrT (%)	6
PkrT (kW)	10
UrT20 (V)	400
UiT0 (kV)	24
Ir (A)	1519

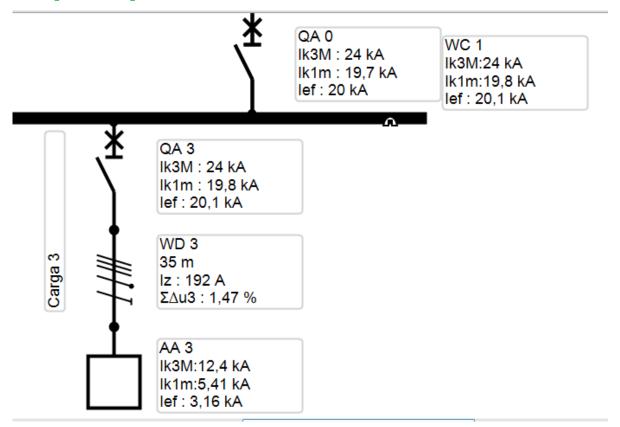
Transformador / Curva de utilidad

Curva BT: Añada una nueva curva

Curva MT: Añada una nueva curva

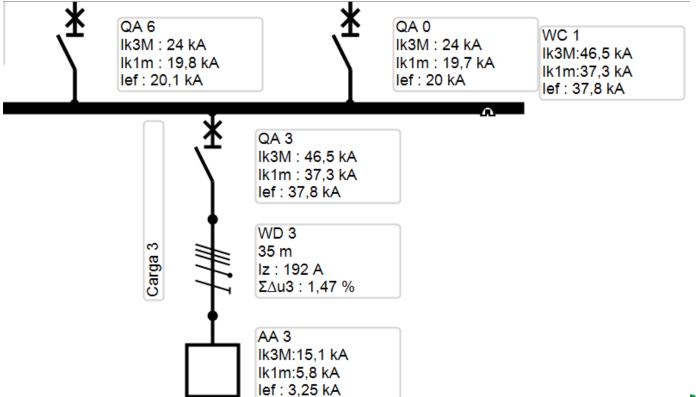
Corriente de cortocircuito trifásico (*I*cc3) en cualquier punto de la instalación de BT

En una instalación trifásica, se obtiene la I_{cc3} en cualquier punto de la siguiente manera:


$$I_{\text{cc3}} = \frac{U}{\sqrt{3} Z_{\text{T}}}$$
 donde

U = tensión compuesta de la red en vacío.

 Z_T = impedancia total por fase de la instalación aguas arriba de donde se encuentra el defecto (en Ω).



Icc3 en cualquier punto de la instalación de BT

Icc3 en cualquier punto de la instalación de BT

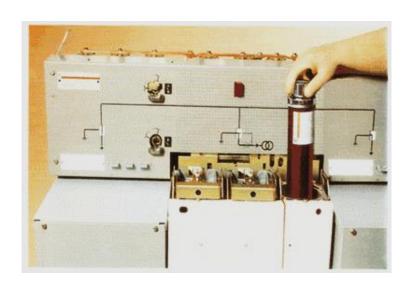
4.0 Dispositivos de protección

Fusibles de MT

Solefuse (Norma UTE. Protección de transformadores y condensadores.) MGK (Norma UTE. Protección de motores) Fusarc CF Norma DIN. Protección de transformadores, de motores y de condensadores. Tepefuse (Norma UTE. Protección de transformadores de medida.)

Fusible

Dispositivo dotado de cierto poder de corte, destinado a cortar automáticamente el circuito eléctrico (por fusión del elemento fusible) cuando la corriente que lo atraviesa supera un cierto valor


Fusibles

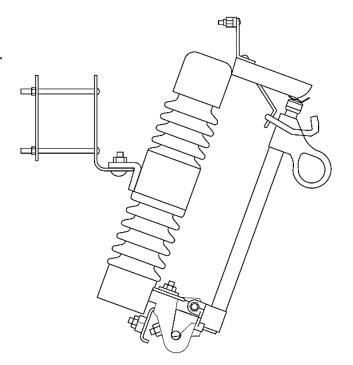
Protección contra cortocircuitos.

Método de protección simple.

Funcionamiento: se basa en el incremento de temperatura.

El tiempo de fusión es inversamente proporcional a la sobreintensidad.

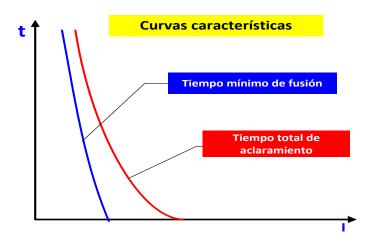
Uso exterior


Fusible de expulsión (FUSE LINK)

Fusible de expulsión (Fuse Link)

Constituido: por elemento fusible, alojado en el interior de un tubo protector aislante. Al producirse el arco que provocan gases que soplan el arco y lo extinguen.

CARACTERISTICAS BASICAS	CORROSION MODERADA		
TENSION NOMINAL DE LINEA CORRIENTE NOMINAL	22,9 kV 100A		
CAPACIDAD DE INTERRUPCION - SIMETRICA - ASIMETRICA	8 kA r.m.s. 10 kA r.m.s.		
NIVEL BASICO DE AISLAMIENTO (BIL) LINEA DE FUGA (MAYOR O IGUAL A)	150 kV 600 mm		
LA BASE PORTAFUSIBLE TRABAJA CON LOS FUSIBLES DE CABEZA REMOVIBLE (NORMA PE-7-314)			



Fuse Link - Características

Después de la fusión aparece un arco en el punto de interrupción.

La interrupción de la corriente se da cuando el arco se extingue

Fusible de expulsión (Fuse Link)

Aplicación en Distribución:

tipos K, T, N o H.

Clase de Tensión: 10 kV o 22,9 kV (X/R= 8-15)

Aplicación en Potencia:

tipos EF o ES.

Clase de Tensión: 69 kV o 138 kV (X/R = 10 - 25)

KyEF: <u>Rápidos</u>.

T, H y ES: <u>Lentos</u>

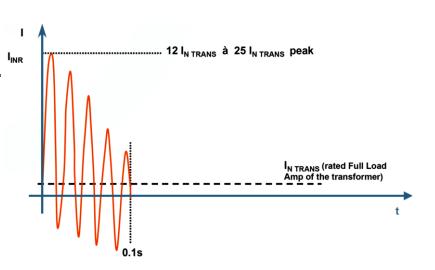
20 amp, Type K (ANSI) Cutout fuse link

Capacidad de corriente permanente Fuse Link

H Rating	Continuous	N Rating	Continuos	EEI-NEMA	Continuous	EEI-NEMA	Continuos
	Current (A)		Current (A)	K or T Rating	Current (A)	K or T Rating	Current (A)
1H	1	25	25	6	9	40	60*
2H	2	30	30	8	12	50	75*
3H	3	40	40	10	15	65	95
5H	5	50	50	12	18	80	120+
8H	8	60	60	15	23	100	150+
		75	75	20	30	140	190
N Rating		85	85	25	38	200	200
5	5	100	100	30	45		
8	8	125	125				
10	10	150	150	* Only when used in a 100- or 200-ampere cutout.			
15	15	200	200	+ Only when used in a 200-ampere cutout.			
20	20			Limited by continuous current rating of cutout.			

Aplicación de fusibles a la protección de transformadores

El transformador alcanza hasta 50°C sobre la T_{AMB.MAX} de 45°C


Admitir sobrecargas controladas.

Deben ser capaces de asumir, INRUSH (0,1 s 8 a 10 I_{NTRF}).

Deben cortar:

Para $zcc \le 6\%$, si $I_{FALLA} \ge 6 I_{NTRF}$,

Para 6% < zcc \leq 10% , si $I_{FALLA} \geq$ 4 - 6 I_{NTRF}

Fallas en el secundario

Los efectos son térmicos y mecánicos.

El daño que ocurre como consecuencia de estos efectos acumulativos es una función de la magnitud y la duración de la corriente así como del número total de fallas.

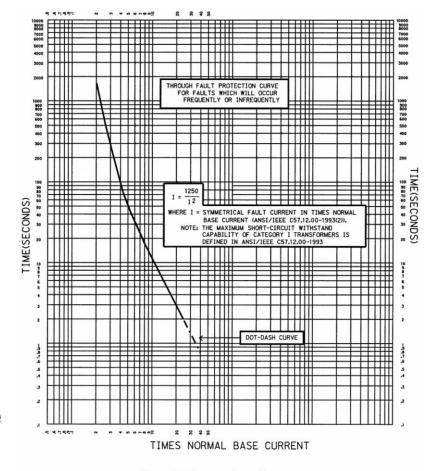


Figure A.1: Category 1 transformers: 5-500 kVA single-phase; 15-500 kVA three-phase

CC máximo - tiempo límite

Límites para Transformador según NEMA			
Impedancia (%)	Max. CC	Tiempo (s)	
≤ 4	25 I _{NTRF}	2	
5	20 I _{NTRF}	3	
6	16,6 I _{NTRF}	4	
≥ 7	≤ 14,3 I _{NTRF}	5	

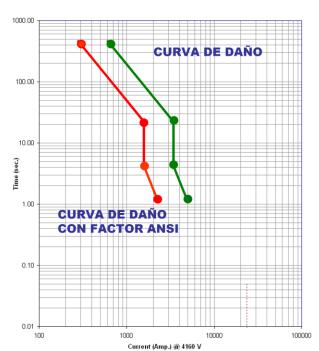
corrientes máximas de cortocircuito simétricas, que pueden soportar los transformadores durante tiempos determinados

Fallas en el secundario

Tener en cuenta que, dependiendo de la conexión del transformador y tipo de falla; las corrientes de línea y en los devanados primario y secundario podrán ser diferentes.

El fusible en el primario "ve la corriente de línea durante una falla en el secundario",

La curva de daño del transformador deberá ajustarse considerando los multiplicadores dados (*Factor ANSI*)


Conexión Transformador	Relación (p.u) entre la corriente del lado primario a la corriente del devanado del transformador									
	Tipo de Falla									
	Trifásica	Fase-Fase	Fase-Tierra							
Yg- yg	1.0	1.0	1.0							
D - d	1.0	0.87	NA							
D - yg	1.0	1.15	0.58							

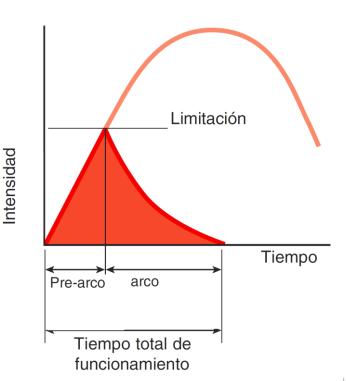
Factor ANSI para Transformador

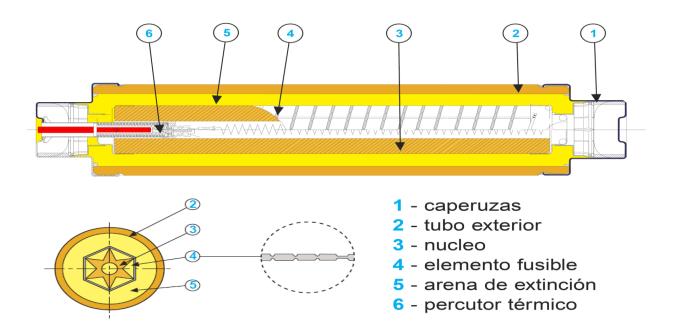
Tipo de Conex.	Falla 3 Ф	Falla 2 Φ	Falla 1 Φ	Factor Ansi
$\triangle \triangle$	1.00	0.87	N/A	0.87
Ϋ́	1.00	1.15	0.58	0.58
∇ \prec	1.00	1.15	N/A	1.00
☆ ≺	1.00	1.00	N/A	1.00
文文	1.00	1.00	1.00	1.00
≺, (1)	1.00	1.00	0.67	0.67
≺ ⊀(2)	1.00	1.00	N/A	1.00

(1): Transformador tipo "Core"

(2): Transformador tipo "Shell"

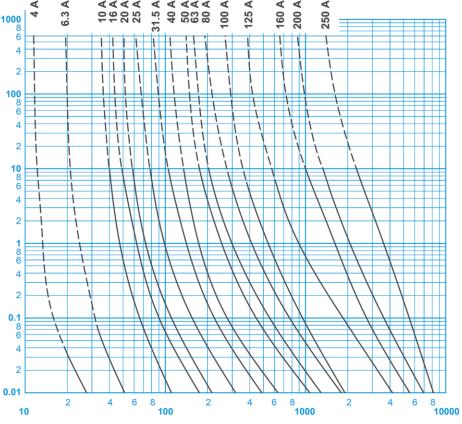
Uso interior


Fusible limitador


Fusible limitador

- De uso interior.
- Limita la corriente de cortocircuito en un tiempo muy corto.
- La velocidad de funcionamiento reduce el efecto de las corrientes de cortocircuito

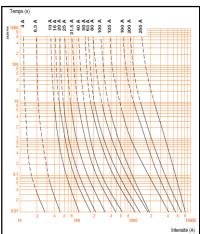
Fusible limitador

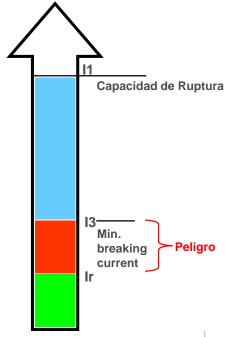

Zonas de funcionamiento de un fusible back-up

13: Intensidad mínima de corte

- Es el valor mínimo de intensidad presunta que provoca la fusión y el corte del fusible.
- Los valores de l3 están entre 3 y 5 veces In.
- Nota: no es suficiente que un fusible limitador de MT. tipo acompañamiento se funda para interrumpir la intensidad. Para corrientes inferiores a I3, el fusible se funde, pero puede no cortar. Se mantendrá un arco hasta que una intervención del exterior interrumpa la intensidad.
- Por tanto, es imprescindible evitar su funcionamiento entre In e I3
- Las sobre-corrientes que sufra en dicho rango, pueden dañar irreversiblemente los elementos fusibles, existiendo riesgo de que el arco no sea extinguido, y el fusible se destruya

Tiempo (s)


Intensidad (A)


Fusible

El fusible es un dispositivo que interrumpe la corriente por la fusión del elemento fusible.

Fusible -12 kV

Referencia	Tensión nominal (kV)	Tensión de servicio (kV)	Intensidad nominal (A)	Capacidad máx. de corte l1 (kA)	Capacidad min. de corte l3 (A)		
51311007M0			4		20		
51006511M0			6.3		36		
51006512M0			10		39		
51006513M0			16		50 62		
51006514M0			20				
51006515M0			25		91		
51006516M0			31.5	63	106		
51006517M0	12	6/12	40		150		
51006518M0	1		50		180		
51006519M0			63		265		
51006520M0			80		280		
51006521M0			100		380		
757364CN			125		650		
757354CP			160	40	1000		
757354CQ			200		1400		

Fusible - 24 kV

Referencia	Tensión nominal (kV)	Tensión de servicio (kV)	Intensidad nominal (A)	Capacidad max. de corte l1 (kA)	Capacidad min. I de corte I3 (A)
51108915M0			6,3		38
51108916M0			10		40
51108917M0			16		60
51108918M0			20		73
51108919M0	1		25	31,5	100
51108920M0			31,5		112
51108921M0			40		164
51108922M0			50		233
51108923M0	-		63		247
51108807M0	1		6,3		36
51108808M0			16		50
51108813M0			20		62
51108814M0			25		91
51108809M0	24	10/24	31,5		106
51108810M0			40		150
51311009M0			4	40	20
51006538M0			6,3		36
51006539M0			10		39
51006540M0			16		50
51006541M0			20		62
51006542M0			25		91
51006543M0			31,5		106
51006544M0			40		150
51006545M0	1		50		180
51006546M0			63	24 5	265
51006547M0			80	31,5	330
roperty 51006548M0			100		450

Schneider Electric

Uso interior

PROTECCIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN

Protección de Transformadores de distribución

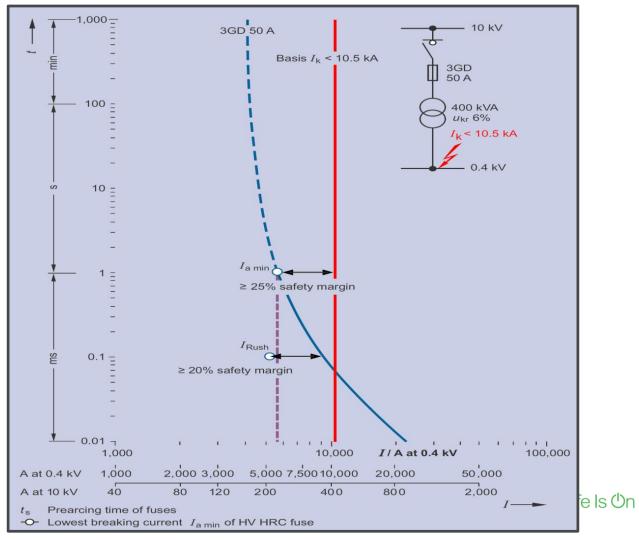
Se requiere conocer

- 1. S_{NTRF} asicomo la sobrecarga máxima permisible.
- 2. Tensión de operación.
- 3. La uk (%)
- 4. INRUSH
- 5. I'k-sec (reflejada en el primario)
- 6. Duración de un cortocircuito, máximo 2s

Valores Típicos Corriente INRUSH

múltiplo (X) de I_{N1} – Tiempo según su Potencia nominal

Р	25	50	100	125	160	200	250	315	_
T	0.1	0.1	0.15	0.2	0.2	0.22	0.22	0.25	_
X	15	14	14	12	12	12	12	12	
U _k %	4	4	4	4	4	4	4	4	_
Р	400	500	630	800	1,000	1,250	1,600	2,000	2,500
T	0.25	0.3	0.3	0.3	0.35	0.35	0.4	0.45	0.45
X	12	11	11	10	10	9	9	8	8
U _k %	4	4	4	6	6	6	6	6	6


Intensidad de I_{K3F} prevista

El criterio mas fiable es que ante la intensidad de cortocircuito trifásica prevista el fusible debe fundir antes de 2 segundos cuando la potencia del transformador sea menor o igual a 630 kVA, o bien antes de 3 segundos si la potencia es mayor de 630 kVA. Es decir:

Si P
$$\leq$$
 630 kVA: $\frac{I_f (2 seg.)}{25} < Int (Ucc = 4\%)$

Si P > 630 kVA:
$$\frac{I_f (3 \text{ seg.})}{16.6}$$
 < Int (Ucc = 6%)

Normas

- 1. IEC 60787: protección de transformadores con fusibles
- 2. IEC 61271-105: para considerar la combinación interruptor-fusible.
- 3. VDE 0670 parte 402. recomendaciones para fusibles de alta tensión.

Criterios para seleccionar el fusible adecuado.

Se define el rango de corriente nominal de los posibles fusibles de MT.

Los criterios a considerar son U_N, la clase de operación, las corrientes de corte más altas y más bajas, así como el tipo de percutor utilizado.

- 1. $U_N \ge U max operac-traf$
- Capacidad de ruptura (I₁) debe ser suficientemente alto (típico ≤ 63 kA)
- 3. Fusible tipo acompañamiento

4. Especialmente cuando se utiliza un dispositivo un switchgear con un mecanismo de disparo tripolar, se recomienda el *uso de un percutor* limitador de temperatura.

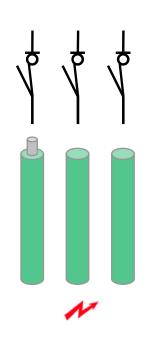
Criterios para seleccionar el fusible adecuado.

Combinación Interruptor-fusibles

IEC 60271 Parte 105 contiene, requisitos para la acción combinada de interruptores y fusibles. La tarea de conmutación se especifica para el interruptor o el fusible en función de la corriente de falla.

Con esto, la interrupción se lleva a cabo a una corriente de transición (transfer current); a determinar, a partir de las características del fusible y de los datos técnicos del interruptor

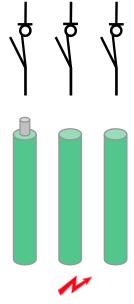
Transfer current of the fuse $(I_{40}) \le$ rated transfer current of the switch o I_4 Transfer current of the fuse $(I_{40}) <$ short-circuit current I'_{K-SEC}

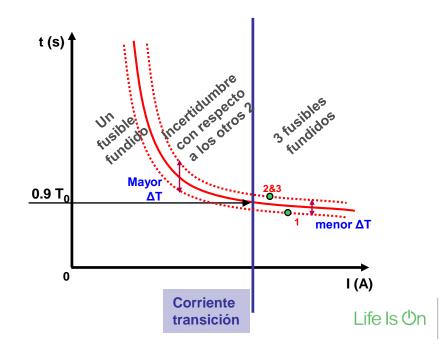


Unidad combinada de interruptor-fusible

Tres fusibles con percutor

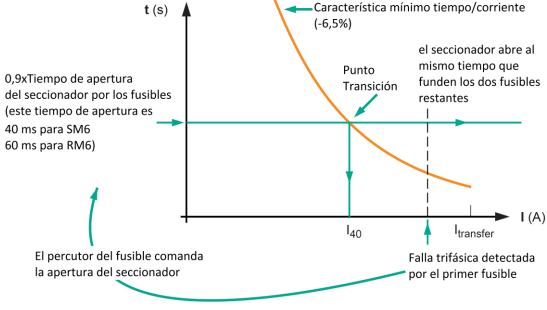
Un interruptor Trifásico


- No es un dispositivo de protección propiamente dicho
- Puede ser disparada por cualquiera de los tres percutores



Transfer current of the fuse

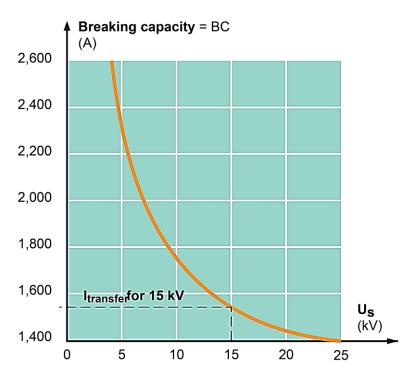
La corriente de transición es el valor por encima del cual la corriente de falla será eliminada por los 3 fusibles solamente, el interruptor no ha tenido tiempo para reaccionar



Corriente de transición del fusible (I₄₀)

Cálculo práctico

se determina trazando para un tiempo igual a 0,9 veces el tiempo de apertura del interruptor por los fusibles en la curva característica mínima de tiempo / corriente del fusible.



Rated transfer current (I_{r-TRANSFER} o I₄) of the switch SM6

en función de la Tensión de servicio

I_{TRANSFER} = breaking capacity

Selección del fusible limitador

Ejemplo: protección del transformador

Características del Transformador

$$S_{NTRF}$$
= 630 kVA; 20kV/400V; I_{N1} =18,2 A; INRUSH (Ie)= 11x I_{N1} =198A; μcc =4%

Cortocircuito en secundario del Transf reflejado: I'_{K-SEC}= 18,2/0,04= 455A

Determinación de las Características del Fusible (I_{rF}) .

$$I_{rF} > 1.4 \times I_{N1} = 25.5A$$
; el fusible elegido es de 31.5 A;

Según tabla T=0,3s; I_{MIN FUSION}= 160A < Ie=198A (*No aceptable*)

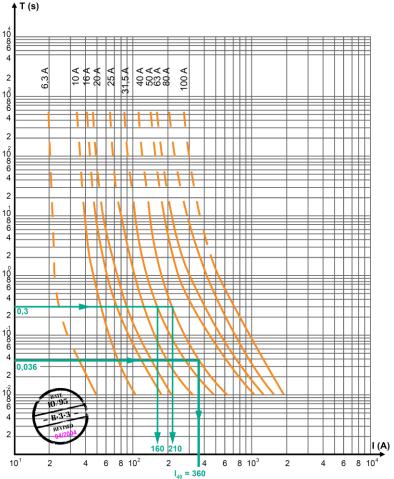
Selección del fusible limitador

Ejemplo: protección del transformador

Proponemos un Fusible de I_{rF} = 40 A;

 $I_{MIN FUSION}$ = 210A > Ie=198A, por lo que el Fusible de 40A, es correcto,

De Tablas del Fabricante: $I_3 = 135 \text{ A}$, $I_1 = 40 \text{ kA}$


$$I_3 = 135 \text{ A} \times 1,25 = 169 < I'_{K-SEC} = 455 \text{ A}$$

Para 36 ms; encontramos I_{40} sobre la curva; I_{40} = 360A

$$I_{40} < I'_{K-SFC} = 455A$$

Determinación del I₄₀

Valores que cumplen los requisitos establecidos

	transformer	I _{nt}			l _e			I _{sc}		
	fuse		I _{rf}	l ₃		I _{minifufu}	I ₄₀			
	switch								I _{transfer}	r
315 kVA	Fusarc CF	9 A	25 A	41 A	108 A	130 A	210 A	230 A		40 kA
630 kVA	Fusarc CF	(18 A)	31.5 A	101 A	(198 A)	160 A	N O T	C O R	R E (СТ
630 kVA	Fusarc CF	18 A	40 A	(135 A)	√ 198 A	210 A	(360 A)	(450 A)		40 kA
	$\frac{630}{\sqrt{3} \cdot 20}$	de tabla de fusib	s les Tab	= X • _{rt} X = 11 la valores cos INRUS		e Curva de ara el 0,9xT		Irt • 100 4 CC en BT "visto" de A	dod	e fuse cumentation

Selection table for the SM6

Rating in A. no overload – $5~^{\circ}C < \theta < 40~^{\circ}C$ Please consult us for overloads and operation over 40 $^{\circ}C$.

type of fuse	operating voltage	tran	transformer output rating (kVA)								er output rating (kVA)							rating (kVA)							rated voltage
	(kV)	25	50	100	125	160	200	250	315	400	500	630	800	1,000	0 1,25	0 1,60	0 2,000	2,500	(kV)						
UTE NFO	standards	: 13.1	00, 64	.210																					
Solefuse	•																								
	5.5	6.3	16	31.5	31.5	63	63	63	63	63									7.2						
	10	6.3	6.3	16	16	31.5	31.5	31.5	63	63	63	63							24						
	15	6.3	6.3	16	16	16	16	16	43	43	43	43	43	63											
	20	6.3	6.3	6.3	6.3	16	16	16	16	43	43	43	43	43	63										
general	case, UTE N	NFC s	tandaı	d: 13.2	00																				
Solefuse)																								
	3.3	16	16	31.5	31.5	31.5	63	63	100	100									7.2						
	5.5	6.3	16	16	31.5	31.5	63	63	63	80	80	100	125												
	6.6	6.3	16	16	16	31.5	31.5	43	43	63	80	100	125	125											
	10	6.3	6.3	16	16	16	31.5	31.5	31.5	43	43	63	80	80	100				12						
	13.8	6.3	6.3	6.3	16	16	16	16	31.5	31.5	31.5	43	63	63	80				17.5						
	15	6.3	6.3	16	16	16	16	16	31.5	31.5	31.5	43	43	63	80										
	20	6.3	6.3	6.3	6.3	16	16	16	16	31.5	31.5	31.5	43	43	63				24						
	22	6.3	6.3	6.3	6.3	16	16	16	16	16	31.5	31.5	31.5	43	63	63									
Fusarc C	F																								
	3,3	16	25	40	50	50	80	80	100	125	125	200	200						7,2						
	5,5	10	16	31,5	31,5	40	50	50	63	80	100	125	125	160	160										
	6,6	10	16	25	31,5	40	50	50	63	80	80	100	125	125	160										
	10	6,3	10	16	20	25	31,5	40	50	50	63	80	80	100	100	125	200		12						
	13,8	6,3	10	16	16	20	25	31,5	31,5	40	50	50	63	80	80	100	125	125	17.5						
	15	6.3	10	10	16	16	20	25	31,5	40	50	50	63	80	80	100	125	125							
	20	6,3	6,3	10	10	16	16	25	25	31,5	40	40	50	50	63	80	100	125	24						
	22	6,3	6,3	10	10	10	16	20	25	25	31,5	40	40	50	50	80	80	100							

